TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024
SOLUTION SKETCHES TO HOMEWORK 11

MATHIAS BRAUN AND WENHAO ZHAO

Homework 11.1 (Cauchy—Riemann equations and C-linearity on C"). Identify C" with
R?" and let U c C". Consider a differentiable function f: U — C. Then at each point
a € U there exists an R-linear mapping D f(a): R*" — C such that

|f(a+h) - f(a) - Df(a)h|

li =0.
nes0, Il 0
h#0
Show Df(a) is C-linear if and only if
0
g_jf(a) =

for every j € {1,...,n}, where 20/0z; :== d/0x; +10/0y; and z = x + iy with x,y € R".

Solution. We identify C" with R*" via x + iy := (x, y). The C-linearity of D f(a) means
that for all values A +id; with 41,4, € R and all x, y € R" we have

Df(a)(d; +idy)(x +iy) = (1] +id2) Df(a)(x +1iy).
Since Df (a) is R-linear, this is equivalent to showing
Df(a)(-y,x) =iDf(a)(x,y)
for all x, y € R" or, considering real and imaginary parts,
RDf(a)(=y,x) = =3Df(a)(x,y),
IDf(a)(=y,x) = RDf(a)(x,y).
It is enough to check these equations along basis vectors x and y. This leads to
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( ) = ( )
for every j € {1,...,n}. Note the ﬁrst and fourth as well as the second and third equation
are equivalent. Moreover the first and second can be reformulated by
=37 )—I%i( )=-il @)

This is clearly equivalent todf/ (’)zj (a) =

Homework 11.2 (Slicing method in action). In this exercise we transfer some well-known
results from one-dimensional complex analysis to the several variables setting. Show the
following statements.
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a. Liouville’s theorem. Every bounded entire function f: C" — C is constant.

b. Identity theorem. Let D c C" be a domain and f: D — C be holomorphic. If f
vanishes identically on B, (a) for some a € D and r > 0, then f = 0.

c. Open mapping theorem. Let D c C”" be adomain and f: D — C be nonconstant
and holomorphic. Then f(D) is again a domain.

d. Maximum principle. Let D ¢ C" be a domain and f: D — C be holomorphic.
If | f] attains its maximum on D then f is constant.

Solution. a. Let a, b € C". With the notation of Lemma 8.3, consider the slicing f, 4
which satisfies f, p—4(0) = f(a) and f, p-4(1) = f(b). Note f, p—q is holomorphic on C
and bounded, so that the standard Liouville theorem implies f; p—4(0) = fa.p-a(1), which
means that f(a) = f(b). Since b € C" was arbitrary we conclude that f is constant.

b. Define U := {z € D : f = 0in a neighborhood of z}. Then a € U. Moreover, U is
open. We claim that U is also closed in D. Then by connectedness of D it follows U = D.

Let (zn)nen be a sequence in U converging to z € D. Assume z ¢ U. Then for each
r > 0 there exists z, € B-(z) N D such that f(z,) # 0. Let z,, be such that z,, € B,(2)
for some r > 0 such that By, (z) € D. Note that z, # z,, since z, ¢ U. Then we consider
the slicing f;, ;. -z, Dz, .z,-z, — C. By convexity of B, (z) we have [0,1] c D, ;. —,,.
Since Dy, .. -, is open, we further find a cylinder of the form Zs := (=6, 1 + 8) +1(-9, 6)
such that Zs € D, , _, . Moreover, since z,, € U it follows that there exists 7, > 0 such
that f,, . -, = 0on [0, 7,]. Hence by the one-dimensional identity theorem it follows that
fz.2,—2, vanishes on Zs. This implies the contradiction f(z,) = fz,,,z,-z, (1) = 0.

c. By continuity, f(D) is path-connected. Thus it only remains to show f(D) is open.
Let w € f(D) and consider z € D such that f(z) = w. Consider a ball B,(z) ¢ D. Then
the restriction f | B, () cannot be constant by the identity theorem, so that there exists a point
p € B,(z) such that f(p) # f(z). In particular, the function f,, ;_,: D~ — Cis not
constant, so that by the one-dimensional open mapping theorem the set f), .—,(Dp z—p)
contains an open neighborhood of f(z). (More precisely, we consider f, ., restricted
to a suitable cylinder as in b. to have a connected subset where it is not constant.) Since
W€ fp-p(Dpz-p) C f(D) we deduce the claim.

d. If | f| attains its maximum on D in a point a and f is not constant, then there cannot
exist a neighborhood of f(a) in f(D) since |f(z)| < |f(a)| for all z € D. This contradicts
the open mapping theorem.

Homework 11.3 (Failure of the open mapping theorem in the fully vectorial case). In
Homework 11.2 we proved the open mapping theorem for functions with target domain
C. Here we show that it is false for vectorial functions f: D — C™, where m > 2, even
when no component is constant. Define f: C2 — C? by f(z1,22) := (z1,2122). Show f is
holomorphic yet not an open map'.

Solution. The function f is holomorphic since each component is a polynomial. Note
(0,0) € f(B,(0)) for any r > 0. Fix such an r. We claim there exists a sequence (W, ),eN
in C? such that w,, — (0,0) in C? as n — oo and w,, ¢ f(B,(0)) for all n € N. Indeed,
define w,, = (1/n?, 1/n). Then f(z) = w, if and only if z; = 1/n* and z, = n. But then

1
liminf | (21, 22)| > liminf {2](0, 1)| = —[(1,0)|| = co.
n—oo n—oo n

This means (z1, z2) ¢ B, (0) for sufficiently large n € N. Hence f(B,(0)) is not open.

IHint. In order to guess where the map is not open one can look where its differential is not invertible.
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Homework 11.4 (Power series in several variables™). a. For each series below, deter-
mine for each series below the largest open set U c C? where it converges absolutely.
Is it convex?
[ee]

. Zz"w”.
n=0
[ee)

° ZZ”WH!.
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b. Let F(z) := ZaeNg cq 2% be a formal power series centered at the origin. Show
that if z € C" is such that F(z) converges absolutely, then F(2;zy,...,4,2,) also
converges absolutely provided |1;| < 1 foreveryi € {1,...,n}.



