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Homework 11.1 (Cauchy–Riemann equations and C-linearity on C𝑛). Identify C𝑛 with
R2𝑛 and let 𝑈 ⊂ C𝑛. Consider a differentiable function 𝑓 : 𝑈 → C. Then at each point
𝑎 ∈ 𝑈 there exists an R-linear mapping D 𝑓 (𝑎) : R2𝑛 → C such that

lim
ℎ→0,
ℎ≠0

| 𝑓 (𝑎 + ℎ) − 𝑓 (𝑎) − 𝐷 𝑓 (𝑎)ℎ|
|ℎ| = 0.

Show D 𝑓 (𝑎) is C-linear if and only if
𝜕

𝜕𝑧 𝑗
𝑓 (𝑎) = 0

for every 𝑗 ∈ {1, . . . , 𝑛}, where 2𝜕/𝜕𝑧 𝑗 := 𝜕/𝜕𝑥 𝑗 + i 𝜕/𝜕𝑦 𝑗 and 𝑧 = 𝑥 + i𝑦 with 𝑥, 𝑦 ∈ R𝑛.

Solution. We identify C𝑛 with R2𝑛 via 𝑥 + i𝑦 := (𝑥, 𝑦). The C-linearity of D 𝑓 (𝑎) means
that for all values 𝜆1 + i𝜆2 with 𝜆1, 𝜆2 ∈ R and all 𝑥, 𝑦 ∈ R𝑛 we have

D 𝑓 (𝑎) (𝜆1 + i𝜆2) (𝑥 + i𝑦) = (𝜆1 + i𝜆2) D 𝑓 (𝑎) (𝑥 + i𝑦).
Since D 𝑓 (𝑎) is R-linear, this is equivalent to showing

D 𝑓 (𝑎) (−𝑦, 𝑥) = i D 𝑓 (𝑎) (𝑥, 𝑦)
for all 𝑥, 𝑦 ∈ R𝑛 or, considering real and imaginary parts,

ℜD 𝑓 (𝑎) (−𝑦, 𝑥) = −ℑD 𝑓 (𝑎) (𝑥, 𝑦),
ℑD 𝑓 (𝑎) (−𝑦, 𝑥) = ℜD 𝑓 (𝑎) (𝑥, 𝑦).

It is enough to check these equations along basis vectors 𝑥 and 𝑦. This leads to

ℜ
[
− 𝜕 𝑓

𝜕𝑥 𝑗

(𝑎)
]
= −ℑ 𝜕 𝑓

𝜕𝑦 𝑗

(𝑎),

ℜ 𝜕 𝑓

𝜕𝑦 𝑗

(𝑎) = −ℑ 𝜕 𝑓

𝜕𝑥 𝑗

(𝑎),

ℑ
[
− 𝜕 𝑓

𝜕𝑥 𝑗

(𝑎)
]
= ℜ 𝜕 𝑓

𝜕𝑦 𝑗

(𝑎),

ℑ 𝜕 𝑓

𝜕𝑦 𝑗

(𝑎) = ℜ 𝜕 𝑓

𝜕𝑥 𝑗

(𝑎)

for every 𝑗 ∈ {1, . . . , 𝑛}. Note the first and fourth as well as the second and third equation
are equivalent. Moreover the first and second can be reformulated by

𝜕 𝑓

𝜕𝑥 𝑗

(𝑎) = ℑ 𝜕 𝑓

𝜕𝑦 𝑗

(𝑎) − iℜ 𝜕 𝑓

𝜕𝑦 𝑗

(𝑎) = −i
𝜕 𝑓

𝜕𝑦 𝑗

(𝑎).

This is clearly equivalent to 𝜕 𝑓 /𝜕𝑧 𝑗 (𝑎) = 0.

Homework 11.2 (Slicing method in action). In this exercise we transfer some well-known
results from one-dimensional complex analysis to the several variables setting. Show the
following statements.
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a. Liouville’s theorem. Every bounded entire function 𝑓 : C𝑛 → C is constant.
b. Identity theorem. Let 𝐷 ⊂ C𝑛 be a domain and 𝑓 : 𝐷 → C be holomorphic. If 𝑓

vanishes identically on 𝐵𝑟 (𝑎) for some 𝑎 ∈ 𝐷 and 𝑟 > 0, then 𝑓 = 0.
c. Open mapping theorem. Let 𝐷 ⊂ C𝑛 be a domain and 𝑓 : 𝐷 → C be nonconstant

and holomorphic. Then 𝑓 (𝐷) is again a domain.
d. Maximum principle. Let 𝐷 ⊂ C𝑛 be a domain and 𝑓 : 𝐷 → C be holomorphic.

If | 𝑓 | attains its maximum on 𝐷 then 𝑓 is constant.

Solution. a. Let 𝑎, 𝑏 ∈ C𝑛. With the notation of Lemma 8.3, consider the slicing 𝑓𝑎,𝑏−𝑎
which satisfies 𝑓𝑎,𝑏−𝑎 (0) = 𝑓 (𝑎) and 𝑓𝑎,𝑏−𝑎 (1) = 𝑓 (𝑏). Note 𝑓𝑎,𝑏−𝑎 is holomorphic on C
and bounded, so that the standard Liouville theorem implies 𝑓𝑎,𝑏−𝑎 (0) = 𝑓𝑎,𝑏−𝑎 (1), which
means that 𝑓 (𝑎) = 𝑓 (𝑏). Since 𝑏 ∈ C𝑛 was arbitrary we conclude that 𝑓 is constant.

b. Define 𝑈 := {𝑧 ∈ 𝐷 : 𝑓 = 0 in a neighborhood of 𝑧}. Then 𝑎 ∈ 𝑈. Moreover, 𝑈 is
open. We claim that 𝑈 is also closed in 𝐷. Then by connectedness of 𝐷 it follows 𝑈 = 𝐷.

Let (𝑧𝑛)𝑛∈N be a sequence in 𝑈 converging to 𝑧 ∈ 𝐷. Assume 𝑧 ∉ 𝑈. Then for each
𝑟 > 0 there exists 𝑧𝑟 ∈ 𝐵𝑟 (𝑧) ∩ 𝐷 such that 𝑓 (𝑧𝑟 ) ≠ 0. Let 𝑧𝑛 be such that 𝑧𝑛 ∈ 𝐵𝑟 (𝑧)
for some 𝑟 > 0 such that 𝐵2𝑟 (𝑧) ⊂ 𝐷. Note that 𝑧𝑟 ≠ 𝑧𝑛 since 𝑧𝑟 ∉ 𝑈. Then we consider
the slicing 𝑓𝑧𝑛 ,𝑧𝑟−𝑧𝑛 : 𝐷𝑧𝑛 ,𝑧𝑟−𝑧𝑛 → C. By convexity of 𝐵𝑟 (𝑧) we have [0, 1] ⊂ 𝐷𝑧𝑛 ,𝑧𝑟−𝑧𝑛 .
Since 𝐷𝑧𝑛 ,𝑧𝑟−𝑧𝑛 is open, we further find a cylinder of the form 𝑍𝛿 := (−𝛿, 1 + 𝛿) + i(−𝛿, 𝛿)
such that 𝑍𝛿 ⊂ 𝐷𝑧𝑛 ,𝑧𝑟−𝑧𝑛 . Moreover, since 𝑧𝑛 ∈ 𝑈 it follows that there exists 𝜏𝑛 > 0 such
that 𝑓𝑧𝑛 ,𝑧𝑟−𝑧𝑛 = 0 on [0, 𝜏𝑛]. Hence by the one-dimensional identity theorem it follows that
𝑓𝑧𝑛 ,𝑧𝑟−𝑧𝑛 vanishes on 𝑍𝛿 . This implies the contradiction 𝑓 (𝑧𝑟 ) = 𝑓𝑧𝑛 ,𝑧𝑟−𝑧𝑛 (1) = 0.

c. By continuity, 𝑓 (𝐷) is path-connected. Thus it only remains to show 𝑓 (𝐷) is open.
Let 𝑤 ∈ 𝑓 (𝐷) and consider 𝑧 ∈ 𝐷 such that 𝑓 (𝑧) = 𝑤. Consider a ball 𝐵𝑟 (𝑧) ⊂ 𝐷. Then
the restriction 𝑓

��
𝐵𝑟 (𝑧) cannot be constant by the identity theorem, so that there exists a point

𝑝 ∈ 𝐵𝑟 (𝑧) such that 𝑓 (𝑝) ≠ 𝑓 (𝑧). In particular, the function 𝑓𝑝,𝑧−𝑝 : 𝐷 𝑝,𝑧−𝑝 → C is not
constant, so that by the one-dimensional open mapping theorem the set 𝑓𝑝,𝑧−𝑝 (𝐷 𝑝,𝑧−𝑝)
contains an open neighborhood of 𝑓 (𝑧). (More precisely, we consider 𝑓𝑝,𝑧−𝑝 restricted
to a suitable cylinder as in b. to have a connected subset where it is not constant.) Since
𝑤 ∈ 𝑓𝑝,𝑧−𝑝 (𝐷 𝑝,𝑧−𝑝) ⊂ 𝑓 (𝐷) we deduce the claim.

d. If | 𝑓 | attains its maximum on 𝐷 in a point 𝑎 and 𝑓 is not constant, then there cannot
exist a neighborhood of 𝑓 (𝑎) in 𝑓 (𝐷) since | 𝑓 (𝑧) | ≤ | 𝑓 (𝑎) | for all 𝑧 ∈ 𝐷. This contradicts
the open mapping theorem.

Homework 11.3 (Failure of the open mapping theorem in the fully vectorial case). In
Homework 11.2 we proved the open mapping theorem for functions with target domain
C. Here we show that it is false for vectorial functions 𝑓 : 𝐷 → C𝑚, where 𝑚 ≥ 2, even
when no component is constant. Define 𝑓 : C2 → C2 by 𝑓 (𝑧1, 𝑧2) := (𝑧1, 𝑧1𝑧2). Show 𝑓 is
holomorphic yet not an open map1.

Solution. The function 𝑓 is holomorphic since each component is a polynomial. Note
(0, 0) ∈ 𝑓 (𝐵𝑟 (0)) for any 𝑟 > 0. Fix such an 𝑟 . We claim there exists a sequence (𝑤𝑛)𝑛∈N
in C2 such that 𝑤𝑛 → (0, 0) in C2 as 𝑛 → ∞ and 𝑤𝑛 ∉ 𝑓 (𝐵𝑟 (0)) for all 𝑛 ∈ N. Indeed,
define 𝑤𝑛 = (1/𝑛2, 1/𝑛). Then 𝑓 (𝑧) = 𝑤𝑛 if and only if 𝑧1 = 1/𝑛2 and 𝑧2 = 𝑛. But then

liminf
𝑛→∞

| (𝑧1, 𝑧2) | ≥ liminf
𝑛→∞

[
𝑛| (0, 1) | − 1

𝑛2 | (1, 0) |
]
= ∞.

This means (𝑧1, 𝑧2) ∉ 𝐵𝑟 (0) for sufficiently large 𝑛 ∈ N. Hence 𝑓 (𝐵𝑟 (0)) is not open.

1Hint. In order to guess where the map is not open one can look where its differential is not invertible.
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Homework 11.4 (Power series in several variables∗). a. For each series below, deter-
mine for each series below the largest open set𝑈 ⊂ C2 where it converges absolutely.
Is it convex?

•
∞∑︁
𝑛=0

𝑧𝑛𝑤𝑛.

•
∞∑︁
𝑛=1

𝑧𝑛𝑤𝑛!.

b. Let 𝐹 (𝑧) :=
∑

𝛼∈N𝑛
0
𝑐𝛼 𝑧𝛼 be a formal power series centered at the origin. Show

that if 𝑧 ∈ C𝑛 is such that 𝐹 (𝑧) converges absolutely, then 𝐹 (𝜆1𝑧1, . . . , 𝜆𝑛𝑧𝑛) also
converges absolutely provided |𝜆𝑖 | ≤ 1 for every 𝑖 ∈ {1, . . . , 𝑛}.

.


