TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 SOLUTION SKETCHES TO HOMEWORK 11

MATHIAS BRAUN AND WENHAO ZHAO

Homework 11.1 (Cauchy–Riemann equations and C-linearity on \mathbb{C}^n). Identify \mathbb{C}^n with \mathbb{R}^{2n} and let $U \subset \mathbb{C}^n$. Consider a differentiable function $f: U \to \mathbb{C}$. Then at each point $a \in U$ there exists an \mathbb{R} -linear mapping $\mathrm{D} f(a) \colon \mathbb{R}^{2n} \to \mathbb{C}$ such that

$$\lim_{\substack{h \to 0, \\ h \neq 0}} \frac{|f(a+h) - f(a) - Df(a)h|}{|h|} = 0.$$

Show Df(a) is C-linear if and only if

$$\frac{\partial}{\partial \overline{z}_j} f(a) = 0$$

for every $j \in \{1, ..., n\}$, where $2\partial/\partial \overline{z}_i := \partial/\partial x_i + i \partial/\partial y_i$ and z = x + iy with $x, y \in \mathbf{R}^n$.

Solution. We identify \mathbb{C}^n with \mathbb{R}^{2n} via x + iy := (x, y). The \mathbb{C} -linearity of $\mathbb{D}f(a)$ means that for all values $\lambda_1 + i\lambda_2$ with $\lambda_1, \lambda_2 \in \mathbb{R}$ and all $x, y \in \mathbb{R}^n$ we have

$$Df(a)(\lambda_1 + i\lambda_2)(x + iy) = (\lambda_1 + i\lambda_2) Df(a)(x + iy).$$

Since Df(a) is **R**-linear, this is equivalent to showing

$$Df(a)(-y,x) = iDf(a)(x,y)$$

for all $x, y \in \mathbf{R}^n$ or, considering real and imaginary parts,

$$\mathfrak{R}\mathrm{D}f(a)(-y,x) = -\mathfrak{I}\mathrm{D}f(a)(x,y),$$

$$\mathfrak{I}\mathrm{D}f(a)(-y,x) = \mathfrak{R}\mathrm{D}f(a)(x,y).$$

It is enough to check these equations along basis vectors x and y. This leads to

$$\begin{split} \mathfrak{R} \Big[-\frac{\partial f}{\partial x_{j}}(a) \Big] &= -\mathfrak{I} \frac{\partial f}{\partial y_{j}}(a), \\ \mathfrak{R} \frac{\partial f}{\partial y_{j}}(a) &= -\mathfrak{I} \frac{\partial f}{\partial x_{j}}(a), \\ \mathfrak{I} \Big[-\frac{\partial f}{\partial x_{j}}(a) \Big] &= \mathfrak{R} \frac{\partial f}{\partial y_{j}}(a), \\ \mathfrak{I} \frac{\partial f}{\partial y_{j}}(a) &= \mathfrak{R} \frac{\partial f}{\partial x_{j}}(a) \end{split}$$

for every $j \in \{1, ..., n\}$. Note the first and fourth as well as the second and third equation are equivalent. Moreover the first and second can be reformulated by

$$\frac{\partial f}{\partial x_j}(a) = \Im \frac{\partial f}{\partial y_j}(a) - \mathrm{i} \, \Re \frac{\partial f}{\partial y_j}(a) = -\mathrm{i} \, \frac{\partial f}{\partial y_j}(a).$$

This is clearly equivalent to $\partial f/\partial \overline{z}_i(a) = 0$.

Homework 11.2 (Slicing method in action). In this exercise we transfer some well-known results from one-dimensional complex analysis to the several variables setting. Show the following statements.

Date: December 9, 2024.

- a. Liouville's theorem. Every bounded entire function $f: \mathbb{C}^n \to \mathbb{C}$ is constant.
- b. **Identity theorem**. Let $D \subset \mathbb{C}^n$ be a domain and $f: D \to \mathbb{C}$ be holomorphic. If f vanishes identically on $B_r(a)$ for some $a \in D$ and r > 0, then f = 0.
- c. Open mapping theorem. Let $D \subset \mathbb{C}^n$ be a domain and $f: D \to \mathbb{C}$ be nonconstant and holomorphic. Then f(D) is again a domain.
- d. **Maximum principle**. Let $D \subset \mathbb{C}^n$ be a domain and $f: D \to \mathbb{C}$ be holomorphic. If |f| attains its maximum on D then f is constant.

Solution. a. Let $a, b \in \mathbb{C}^n$. With the notation of Lemma 8.3, consider the slicing $f_{a,b-a}$ which satisfies $f_{a,b-a}(0) = f(a)$ and $f_{a,b-a}(1) = f(b)$. Note $f_{a,b-a}$ is holomorphic on \mathbb{C} and bounded, so that the standard Liouville theorem implies $f_{a,b-a}(0) = f_{a,b-a}(1)$, which means that f(a) = f(b). Since $b \in \mathbb{C}^n$ was arbitrary we conclude that f is constant.

b. Define $U := \{z \in D : f = 0 \text{ in a neighborhood of } z\}$. Then $a \in U$. Moreover, U is open. We claim that U is also closed in D. Then by connectedness of D it follows U = D.

Let $(z_n)_{n\in\mathbb{N}}$ be a sequence in U converging to $z\in D$. Assume $z\notin U$. Then for each r>0 there exists $z_r\in B_r(z)\cap D$ such that $f(z_r)\neq 0$. Let z_n be such that $z_n\in B_r(z)$ for some r>0 such that $B_{2r}(z)\subset D$. Note that $z_r\neq z_n$ since $z_r\notin U$. Then we consider the slicing $f_{z_n,z_r-z_n}\colon D_{z_n,z_r-z_n}\to \mathbb{C}$. By convexity of $B_r(z)$ we have $[0,1]\subset D_{z_n,z_r-z_n}$. Since D_{z_n,z_r-z_n} is open, we further find a cylinder of the form $Z_\delta:=(-\delta,1+\delta)+\mathrm{i}(-\delta,\delta)$ such that $Z_\delta\subset D_{z_n,z_r-z_n}$. Moreover, since $z_n\in U$ it follows that there exists $\tau_n>0$ such that $f_{z_n,z_r-z_n}=0$ on $[0,\tau_n]$. Hence by the one-dimensional identity theorem it follows that f_{z_n,z_r-z_n} vanishes on Z_δ . This implies the contradiction $f(z_r)=f_{z_n,z_r-z_n}(1)=0$.

c. By continuity, f(D) is path-connected. Thus it only remains to show f(D) is open. Let $w \in f(D)$ and consider $z \in D$ such that f(z) = w. Consider a ball $B_r(z) \subset D$. Then the restriction $f|_{B_r(z)}$ cannot be constant by the identity theorem, so that there exists a point $p \in B_r(z)$ such that $f(p) \neq f(z)$. In particular, the function $f_{p,z-p} \colon D_{p,z-p} \to \mathbf{C}$ is not constant, so that by the one-dimensional open mapping theorem the set $f_{p,z-p}(D_{p,z-p})$ contains an open neighborhood of f(z). (More precisely, we consider $f_{p,z-p}$ restricted to a suitable cylinder as in b. to have a connected subset where it is not constant.) Since $w \in f_{p,z-p}(D_{p,z-p}) \subset f(D)$ we deduce the claim.

d. If |f| attains its maximum on D in a point a and f is not constant, then there cannot exist a neighborhood of f(a) in f(D) since $|f(z)| \le |f(a)|$ for all $z \in D$. This contradicts the open mapping theorem.

Homework 11.3 (Failure of the open mapping theorem in the fully vectorial case). In Homework 11.2 we proved the open mapping theorem for functions with target domain \mathbb{C} . Here we show that it is false for vectorial functions $f: D \to \mathbb{C}^m$, where $m \ge 2$, even when no component is constant. Define $f: \mathbb{C}^2 \to \mathbb{C}^2$ by $f(z_1, z_2) := (z_1, z_1 z_2)$. Show f is holomorphic yet not an open map¹.

Solution. The function f is holomorphic since each component is a polynomial. Note $(0,0) \in f(B_r(0))$ for any r > 0. Fix such an r. We claim there exists a sequence $(w_n)_{n \in \mathbb{N}}$ in \mathbb{C}^2 such that $w_n \to (0,0)$ in \mathbb{C}^2 as $n \to \infty$ and $w_n \notin f(B_r(0))$ for all $n \in \mathbb{N}$. Indeed, define $w_n = (1/n^2, 1/n)$. Then $f(z) = w_n$ if and only if $z_1 = 1/n^2$ and $z_2 = n$. But then

$$\liminf_{n \to \infty} |(z_1, z_2)| \ge \liminf_{n \to \infty} \left[n |(0, 1)| - \frac{1}{n^2} |(1, 0)| \right] = \infty.$$

This means $(z_1, z_2) \notin B_r(0)$ for sufficiently large $n \in \mathbb{N}$. Hence $f(B_r(0))$ is not open.

¹Hint. In order to guess where the map is not open one can look where its differential is not invertible.

Homework 11.4 (Power series in several variables*). a. For each series below, determine for each series below the largest open set $U \subset \mathbb{C}^2$ where it converges absolutely.

- mine for each series below the largest open set S = S. Is it convex?

 $\sum_{n=0}^{\infty} z^n w^n$.

 $\sum_{n=1}^{\infty} z^n w^{n!}$.

 b. Let $F(z) := \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} z^{\alpha}$ be a formal power series centered at the origin. Show that if $z \in \mathbb{C}^n$ is such that F(z) converges absolutely, then $F(\lambda_1 z_1, \dots, \lambda_n z_n)$ also converges absolutely provided $|\lambda_i| \le 1$ for every $i \in \{1, \dots, n\}$. converges absolutely provided $|\lambda_i| \le 1$ for every $i \in \{1, ..., n\}$.